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Grammar: A generative grammar G is an ordered quadruple G=(VN, VT, S, F) where VN and VT 

are finite alphabets with VN Ç VT = Æ, S is a distinguished symbol of VN, and F is a finite set of 

ordered pairs (P, Q) such that P and Q are in (VN È VT)* and P contains at least one symbol from 
VN.  (Cf. Revesz 1983) 

 

NB: The symbols of VN are called nonterminal symbols and are usually denoted by capital letters.  

The symbols of VT are called terminal symbols and are denoted by small letters.  The sets VN 

and VT are disjoint (i.e., VN Ç VT = Æ).  The nonterminal symbol S is called the initial symbol 
and is used to start the derivations of the strings/words of the language.  The ordered pairs in F 

are called rewriting rules or productions and are written in the form P ® Q where the symbol ® 

is not in VN È VT. 
 

Derivation in one step: Given a grammar G=(VN, VT, S, F) and two words X, Y Î (VN È VT)*, 

we say that Y is derivable from X in one step, in symbols       , iff there are words P1 and P2 in 

(VNÈVT)* and a production P®Q in F such that X=P1PP2 and Y=P1QP2. 

Derivation: Given a grammar G=(VN, VT, S, F) and two words X, Y in (VN È VT)*, we say that 

Y is derivable from X, in symbols        , iff X=Y or there is some word Z in (VN È VT)* 

such that        and        . 

(In other words, the relation     is the reflexive and transitive closure of      .) 
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Language: The language generated by G is defined as  

     L(G) = {P|       }ÇVT* 

That is, the language generated by G contains exactly those words (sentences) which are 

derivable from the initial symbol S and contain only terminal symbols. 

(Adapted from Revesz 1983.)  

 

Types of grammars/languages: A generative grammar G = (VN, VT, S, F) is said to be of type i 

if it satisfies the corresponding restrictions in the following list: 

 

i = 0: No restrictions [Unrestricted rewriting system/Phrase Structure Grammar (PSG)] 

i = 1: Every rewriting rule in F has the form Q1AQ2 ® Q1PQ2, with Q1, Q2 and P in (VN È VT)*, 

A Î VN, and P ¹ e (e is an "empty" element where for every X, eX=Xe=X), except possibly for 

the rule S ® e, which may occur in F, in which case S does not occur on the right-hand sides of 

the rules. [Context-sensitive PSG] 

i = 2: Every rule in F has the form A ® P, where A Î VN and P Î (VN È VT)*. [Context-free 
PSG] 

i = 3: Every rule in F has the form either A ® PB or A ® P, where A, B Î VN and P Î VT*. 
[Regular/Finite-state grammar] 

 

Correspondingly, a language is said to be of type i if it is generated by a type i grammar.  The 

class of type i languages is denoted by Li. [See Chomsky 1959.] 

 

The Chomsky Hierarchy: L3 (RL) Ì L2 (CFL) Ì L1 (CSL) Ì L0 (REL) (Chomsky 1963) 
 

The Pumping Lemma for Regular Languages and why natural language is not regular: 
 

¨ Let L be an infinite regular/finite-state language.  Then there are strings x, y, z such that y ¹ e 
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and xynz Î L for each n³0. 
 

Eg. 1. The language L = {anbn: n ³ 0} is not regular. (Chomsky 1956)  Reason: Given the 
pumping lemma, there are strings x, y, and z with y ¹ e such that xynz Î L for each n ³ 0.  There 
are three possibilities for y, and in each case we can show that L must contain some string not of 
the correct form.  Case 1: y consists entirely of a’s.  Then x = ap, y = aq, and z = arbs, where p, r 

³ 0 and q, s > 0.  But then L must contain xynz = ap+nq+r bs for each n ³ 0, and at most one of 
these strings has equal numbers of a’s and b’s. [I.e., all the b’s are contained in the z part, and as 
y is pumped, the number of a’s in the string will increase while the number of b’s remains the 
constant.  Thus, we will continually be producing strings which have more a’s than b’s in them, 
which cannot be in the language anbn.] Case 2: y consists entirely of b’s; this is similar to Case 1 
(but here the number of b’s outstrips the number of a’s).  Case 3: y contains both a’s and b’s.  

Then for n>1, xynz has an occurrence of b preceding an occurrence of a and therefore cannot be 
in L.  [NB: This language can be generated by the Context-free PSG G = (VN = {S}, VT = {a, b}, 

S, F= {S®ab, S®aSb}).][See Partee, et al. 1990, and other standard textbooks.] 
 

Eg. 2. The language L = {xxR | x Î {a,b}*} (where xR denotes the reversal/mirror image of the 
string x) is not regular. (Chomsky 1956)  In strings of this language, the ith symbol from the left 
must match the ith symbol from the right: 
 
  a   b   b   a   b   b   a   b   b   a 
                                              
 
 
 
Reason: This language can be shown not to be regular by first intersecting it with the regular 

language aa*bbaa* to give L={anb2an | n³1} and showing that the latter is not regular by means 

of the pumping lemma.  [Since regular languages are known to be closed under intersection (as 

well as under other operations), if the “mirror-image” language were regular, L would be also, 

which is not the case.] 
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☛ Nested dependencies cannot be represented by regular grammars. 

 

Eg. 1. (Chomsky and Miller 1963) 

 

Anyone1 who feels that if2 so3 many more4 students5 whom we6 haven’t6 actually admitted are5 

sitting in on the course than4 ones we have that3 the room had to be changed, then2 probably 

auditors will have to be excluded, is1 likely to agree that the curriculum needs revision. 

 

The Pumping Lemma for Context-free PS languages: 

 

¨ Let G a Context-free PSG.  Then there is a constant K, depending on G, such that any string 

w in L(G) of length greater than K can be rewritten as w = uvxyz in such a way that either v or y 

is nonempty and uvnxynz is in L(G) for every n³0. 
 

Eg. 1. The language L = {anbncn | n > 0} is not a Context-free PS language.  Proof: omitted (see, 
for example, Lewis and Papadimitriou 1981: 126)  [NB: This language can be generated by the 

Context-sensitive PSG G = (VN = {S,  A, B, C}, VT = {a, b, c}, S, F = {S®aSBC, S®aBC, 

CB®AB, AB®AC, AC®BC, aB®ab, bB®bb, bC®bc, cC®cc}).] 
 

Eg. 2. The language L = {xx | x Î {a,b}*} is not a Context-free PS language.  (Chomsky 1956) 

This language exhibits “cross-serial” dependencies, for strings of length 2n in the ith and (n+i)th 

symbols must match.  Proof: omitted.  (See for example Partee, et al. 1990: 503) [NB: This 

language can be generated by a Context-sensitive PSG. See Chomsky 1959, 1963.] 

 
  x1   x2   …   xn   …   y1   y2   …   yn 
                                                                
 

 

 

☛ Cross-serial dependencies cannot be represented by Context-free PSGs. 
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Whether natural language is Context-free or not: Controversial.  See, among others, 

Chomsky 1956, Chomsky 1959, Bar-Hillel and Shamir 1960, Chomsky 1963, Postal 1964, 

Pullum and Gazdar 1982, Bresnan et al. 1982, Hingginbotham 1984, Shieber 1985, etc. 

 

“… It is not difficult to construct languages that are beyond the range of description of [å, F] 

grammars [our Context-free/Context-sensitive PSG; NF].  In fact, the language L3 of (12iii) [i.e.,  

L={xx | xÎ {a, b}*}, our Eg. 2. above (the so-called “copying language”)] is evidently not a 
terminal [i.e., PS] language.9 [note 9 says that “[t]his is not true if the grammar contains rules 

rewriting a symbol in non-null context…”  That is, the language L is generated by a 

Context-sensitive PSG.  See above.]  I do not know whether English is actually a terminal 

language or whether there are other actual languages that are literally beyond the bounds of 

phrase structure description.  Hence I see no way to disqualify this theory of linguistic structure 

on the basis of consideration (3) [i.e., weak generation].  When we turn to the question of the 

complexity of description…, however, we find that there are ample grounds for the conclusion 

that this theory of linguistic structure is fundamentally inadequate.” (Chomsky 1956: 116 (page 

reference is to the 1965 corrected version)) 

 

The Weak Generative Capacity of Transformational Grammars: 

 

Transformations ' {Adjunction, Substitution, Deletion} (Deletion is subject to the “condition on 

recoverability” (cf. Chomsky 1965: 144-145, 177ff; Peters and Ritchie 1973: 62)). 

 

The “standard theory” is assumed (particularly, the “cyclic application” of transformations). 

 

Then, we have the following theorems by Peters and Ritchie 1973 (see also Salomaa 1971): 

 

Theorem 5.1 : Every recursively enumerable language is generated by some context-sensitive 

based transformational grammar, and conversely. 

 

Theorem 5.2 : Every recursively enumerable language is generated by some context-free based 
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transformational grammar, and conversely. 

 

¨ L3 (RL) Ì L2 (CFL) Ì L1 (CSL) Ì recursive languages Ì L0 (=recursively enumerable 
language) 

 

What do these theorems mean for linguistic theory?  (Matthews 1979, Perrault 1984) 

 

“The source of nonrecursivity in transformationally generated languages is that transformations 

can delete large parts of the tree, thus producing surface trees that are arbitrarily smaller than the 

deep structure trees they were derived from.” (Perrault 1984: 167) 

 

We need a stronger condition on deletion operations than the original “recoverability condition” 

(Peters and Ritchie 1973: 71-72, 81-83).  Peters and Ritchie show that if the rules of a 

transformational grammar meet a certain condition (what Peters 1973: 382 calls the “survivor 

property”), the language generated by such a transformational grammar will be recursive.  

Further, Peters 1973 shows that all the rules proposed by linguists do in fact meet this condition. 

 

The more fundamental question is: Must natural language be recursive?  

 

Yes: Putnam 1961, Levelt 1974 

Not necessarily: Matthews 1979, Chomsky 1980 

 

“…, it seems that this [i.e., the Peters-Ritchie result] is one kind of argument that might support 

the thesis of recursiveness, though obviously it would not, and is not intended to show that 

recursiveness is a logically necessary property of [human] language.  In short, while language 

may be recursive, there is no reason to suppose that this must be so.” (Chomsky 1980: 122) 

 

“Notice that it might be a reasonable move to abstract away from grammars and consider only 

the languages that they generate.  Most of the work in mathematical linguistics does just that, 

and results have been attained that even have some empirical significance. … But it is important 
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to recognize that when we move from grammar to language we are moving a step further away 

from the [actual] mechanisms; we are moving to a higher stage of abstraction, and perhaps 

illegitimately so, …”  (Chomsky 1980: 86) 

 

Chomsky goes on to claim that the question cannot even be properly addressed: 

 

“A third kind of problem that arises when we consider E-languages is that sets have definite 

properties.  Thus it seems to be sensible to ask whether the E-languages made available by 

some theory of language have specific formal properties: Are they context-free languages, or 

recursive languages for which a decision procedure is available, or recursively enumerable 

languages that can be generated by a finite procedure, or denumerable?  All of these proposals 

have been advanced, and denied, but what is relevant here is that they are taken seriously. … But 

the main point to notice is that these discussions are simply not about anything, they have no 

content or substance, until we define the notions E-language and “weak generation” [of natural 

languages] somehow.  That has never been done, or even attempted, to my knowledge, in any 

serious way, …” (Chomsky 1988: 47; emphasis original) 
 
 
◆ If we accept Chomsky’s view, then empirically meaningful mathematical studies should be 
done not about “weak generation,” but rather about “strong generation.” 
 
👉 E 言語、I 言語、理論、理論の提示、算術の理論 vs. 原子理論、等の関連する議論
については、『チョムスキー言語基礎論集』pp. 250-256（およびその前後の議論）を参照。 
 

Strong and Weak Generation 

"Let us say that a grammar weakly generates a set of sentences and that it strongly generates a 

set of structural descriptions […].  Suppose that the linguistic theory T provides a class of 

grammars G1, G2, …, where Gi weakly generates the language Li and strongly generates the 

system of structural descriptions åi.  Then the class {L1, L2, …} constitutes the weak generative 

capacity of T and the class {å1, å2, …} constitutes the strong generative capacity of T."  
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(Chomsky 1965: 60) 

 

Defining L(G) as the language generated by a grammar G (see above) and å(G) as the set of 

structural descriptions specified by G, we have 

 

   WGC (G) = L(G) 

   WGC (T) = {L(G1), L(G2), …}, where T provides {G1, G2, …} 

   SGC (G) = å(G) 

   SGC (T) = {å(G1), å(G2), …}, where T provides {G1, G2, …} 

 

Now we can define "equivalence" in weak and strong generative capacity in terms of identity 

(Chomsky and Miller 1963): 

   -Two grammars G1 and G2 are equivalent in WGC iff they generate the same set of strings, 

i.e., iff L(G1)=L(G2). 

   -Two theories T1 and T2 are equivalent in WGC iff for every grammar Gi provided by T1 

there is a grammar Gi' provided by T2 such that L(Gi) = L(Gi') and for every grammar Gi' 
provided by T2 there is a grammar Gi provided by T1 such that L(Gi') = L(Gi). 

   -Two grammars G1 and G2 are equivalent in SGC iff they generate the same set of structural 

descriptions, i.e., iff å(G1) = å(G2). 

   -Two theories T1 and T2 are equivalent in SGC iff for every grammar Gi provided by T1 there 

is a grammar Gi' provided by T2 such that å(Gi) = å(Gi') and for every grammar Gi' provided by 

T2 there is a grammar Gi provided by T1 such that å(Gi') = å(Gi). 

 

Kuroda 1976: 308: "…formal grammars, in general, can be strongly equivalent without being 

essentially identical." 

 

Equivalence in terms of isomorphism: Two grammars G and G' are equivalent in SGC if there 

is an isomorphism between their derivation sets, i.e., a bijective mapping which preserves certain 

given functions or relations. 
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SGC(G) = SGC(G') iff, for the functions f1, …, fn on å(G) and the corresponding functions f'1, 

…, f'n on å(G'), there is a bijective mapping Y, Y: å(G) ® å(G'), such that if Y(Di) = Di', Di Î 

å(G) and Di' Î å(G'), then, for all j, 1£j£n, fj(Di) = f'j(Di'). 
 

Equivalence in terms of homeomorphism: "Given two tree languages, K and K', and a function 

f from K to K', we can ask if, for each set of phrases Õ of K, there is a set of phrases Õ' of K' 

sufficiently large so that f will be continuous from T/Õ(K) [a topology generated by Õ; NF] to 

T/Õ'(K'), or from T*/Õ(K) to T*/Õ'(K').  We will say that f is structurally continuous 

(structurally *-continuous) if for each finite set of phrases Õ of K there exists a finite set of 

phrases Õ' of K' such that f is continuous from T/Õ(K) to T/Õ' (K') (from T*/Õ(K) to 

T*/Õ'(K')); f is called a structural homeomorphism (*-homeomorphism) if f is bijective and if f 

and its inverse are structurally continuous (structurally *-continuous)." (adapted from Kuroda 

1976: 314) 

 

強生成力に関する初期の頃からの有力なアプローチとして形式的べき級数（formal power 

series）の概念を用いるものがある。Chomsky and Schuetzenberger 1963、Gross and Lentin 

1970, Salomaa and Soittola 1978等を参照。 

 

Formal power series: 

“Schuetzenberger’s notion of representing sets enumerated by a generative process in terms of 

formal power series is well motivated for the study of language.  As has been mentioned several 

times, we are ultimately interested in studying processes that generate systems of structural 

descriptions rather than sets of strings; that is, we are ultimately interested in strong rather than 

weak generative capacity.  The framework just sketched provides a first step toward this goal, 

since it takes account of the number of structural descriptions assigned to a string (though not the 

structural descriptions themselves).  It also provides a particularly natural way of approaching 

the study of nondeterministic transduction.” (Chomsky 1963: 406) 

 

実際、1950年代後半から 1960年代初頭にかけての研究の全てにおいて、言語学的に有

意義な結果はたった 1つだけだと思います。… その結果とは、文脈自由文法を、（ここ
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が肝心なのですが）強い意味で等価な非決定性プッシュダウン・オートマトンへ写像す

るための構成的手続が存在するという事実です。	 （『生成文法の企て』、p. 349） 

 

基本的に、強生成力に関する数理言語学的研究は為されていないことになります。とに

かくあまりに複雑になりすぎるんです。実際、強生成力が研究されている唯一のやり方

というのは…、構造を持った表現を取り上げて、それを線形連鎖として扱うという方法

です。 でも、そうなると弱生成力に戻ってしまい、言語学的動機付けや意義を失うこと

になってしまいます。	 （同書、p. 351） 

 

[註：引用頁等、書誌情報の詳細のいくつかは省略した] 
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